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I. INTRODUCTION

To detect long-term climate trends, it is es-

sential to produce long-term and cotlsistcnt data

sets from a variety of different satellite platforms
With current global cloud climatology data sets.
such as the International Satellite Cloud Clima-

tology Experiment (ISCCP) or CLAVR (Clouds

from Advanced Vet3., High Resolution Radiome-

ter), one of the first processing steps is to deter-
mine whether an imager pixel is obstructed be-

tween the satellite and the surface, i.e., determine

a cloud "mask." A cloud mask is essential to

studies monitoring changes over ocean, hind, or

snow-covered surfaces. As part of the Earth Ob-

serving System (EOS) program, a series of plat-
forms will be flown beginning in 1997 with the

Tropical Rainfall Measurement Mission (TRMM)
and subsequently the EOS-AM and EOS-PM

platforms in following years. The cloud imagcr

on TRMM is the Visible/Infrared Sensor (VIRS).

while the Moderate Resolution Imaging Spectro-

radiometer 0VIODIS) is the i,nagcr on the EOS

platforms. To be useful for long term sit, dies, a
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cloud masking algorithm should produce consis-

tent results bct_ecn existing (AVHRR) data, and

future VIRS and MODIS data. The present work

outlines both existing :rod proposed approaches to
detecting cloud using mtdlispcctral narrm_band
radiance data

Clouds gcncrall) arc characterized by higher
albcdos and lox_cr tcmpcralurcs than the underly-
ing surface. Hox_cvcr. there are numerous condi-

tions when this charactcrizatmn is inappropriate,
most notably over snow.and ice. Of the cloud

types, cirrus, stratocumulus and cumulus are the

most difficult to detect. Other problems arise
v,hen analyzing data from sun-glint areas over

occa_ls or lakes, over deserts, or over regions
containing numerous fires and smoke. The cloud

mask effoFt builds upou operational experience of

several groups Ihat will nox_ be discussed.

2. HERITAGE ALGORITHMS

The CERES cloud masking algorithm (Baum

et al. 1994) ',_ill rcl) heavily upon a rich heritage

of both NASA and NOAA experience with global
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data analysis. Initial algorithm design will incor-

porate the approaches used by ISCCP
(International Satellite Cloud Climatology Proj-

ect) (Rossow and Garder 1993), CLAVR (Clouds
from AVI-IKR) (Stowe et al., 1991), and SER-

CAA (Support of Environmental Requirements
for Cloud Analysis and Archive). The ISCCP

.,algorithms are based upon two channels, one in
the visible wavelength region and one in the in-

frared. The CLAVR approach uses all five chan-

nels of the AVHRR instrument. The CLAVR

multispectral threshold approach incorporates
narrowband channel difference and ratio tests,

including dynamic threshold specification with

clear-sky radiation statistics.
The SERCAA (Gustafson et al. 1994) algo-

rithm is operational at the Phillips Laboratory,
Hanscom Air Force Base, and uses all five

AVHRR radiometric channels. The SERCAA is

sponsored jointly by the Department of Defense,

Department of Energy. and Environmental Pro-
tection Agency Strategic Environmental Research

and Development Program.
The International Satellite Cloud Climatology

Project (ISCCP) cloud masking algorithm is de-
scribed by Rossow (1989, 1993), Rossow et al.

(1989) and Seze and Rossow (1991a). Data are
used from the narro_band VIS (0.6 micron) and

the IR (11 micron) channels. The ISCCP algo-

rithm is based on the premise that the observed

VIS and IR radiances are caused by only two

t_ges of conditions, 'cloudy' and 'clear', and that

the ranges of radiances and their variability that
are associated with these two conditions do not

overlap (Rossow and Garder 1993). As a result,

the algorithm is based upon thresholds, where a

pixel is classified as "cloudy" only if at least one
radiance value is distinct from the inferred

"clear" value by an amount larger than the uncer-

tainty in that "clear" value. The uncertainty can
be caused both by measurement errors and by

natural variability. The "threshold" for cloud de-

tection is the magnitude of the uncertainty in the

clear radiance estimates. This algorithm is con-

strutted to be ,cloud-conservative," minimizing

false cloud detections but missing clouds that

resemble clear conditions.
The NOAA CLAVR algorithm (Phase I) uses

all five channels of AVHRR to derive a global

cloud mask (Stowe et al., 1991). It examines

multispoctral information, channel differences,

and spatial differences and then employs a series

of sequential decision tree tests. Cioudfree,

mixed (variable cloud)') and cloud)' regions are

identified for 2x2 GAC pixel arrays. If all four

pixels in the array fail all the cloud tests, then the
array is labeled as cloud-free (0% cloudy); if all

four pixels satisfy just one of the cloud tests, then
the array is labeled as 100% cloudy. If 1 to 3

pixels satisfy a cloud test. then the array is la-
beled as mixed and assigned an arbitrary value of

50% cloud)'. If all four pixels of a mixed or

cloud)' array satisfy a clear-restoral test (required
for snow/ice, ocean specular reflection, and bright

desert surfaces) then the pixel array is re-

classified as "restored-clear" (0% cloudy). The set

of cloud tests is subdivided into da)time ocean

scenes, daytime land scenes, nighttime ocean

scenes and nighttime land scenes. Subsequent

phases of the CLAVR cloud mask, now under
development, will be incorporated as modifica-

tions become available.
SERCAA, Support of Environmental Re-

quirements for a Cloud Analysis and Archive is

the prototype for the US Air Force's new global
cloud analysis model. SERCAA makes use of a

number of algorithms tailored to sensors on both

the polar orbiting and geostationary meteorologi-
cal satellite platforms. The resulting cloud masks
are determined at sensor pixel resolution rather

than a common grid. These algorithms have been

extensively tested at various global locations.
Unfortunately. existing approaches have limi-

tations, notably in detecting cloud shadows, cloud

over snowy- or ice covered surfaces, clouds in sun-

glint areas, fires and smoke from biomass bum-
ing, and dust storms over deserts. An improved

global cloud mask appropriate for the EOS time-
frame is discussed, and examples will be shown

from application of the cloud mask to existing

AVHRR data.

3. NEW METHODOLOGY

Two new classification methods are used in

this study. Both methods use a set of pairwise

decisions to classify samples. Most classification

methods utilize a small number of features due to

their multidimensional nature. For those meth-

ods, it is not feasible to use more than 10-20 fea-

tures.
The feature vector used in this study consists

of 164 spectral and textural and pseudo-tex'tural

features. The spectral features are created from

the original 5 channels of the AVI-IRR data and a
sixth channel which is the reflectance of channel

3. Spectral ratios, differences, arctangents and
various other functions are computed. Grey level
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difference vector (GLDV) textural features are

computed over a 7x7 mask. Pseudo textures are

computed over a 3x3 neighborhood.
The pairwise classifiers select a subset of fea-

tures from the feature vector. The selected fea-

tures are optimal for distinguishing between pairs
of classes. This reduces the size of the final fea-

ture vector to approximately 20 - 30 features.
The final size of the feature vector is determined

by the number of tests performed for each pair of
classes.

3.1 Training

The classifiers were trained using the Satellite

Imagery Visualization System (SIVIS). SIVIS
allows the user to visualize large satellite images

and select samples from the data. Representative

samples of 23 different classes were selected from
over 40 scenes. The scenes are chosen from three

main climate regimes; polar, Middle-Eastern
desert and South American rainforest during the

burning season. A separate classifier is con-
structed for each regime.

3.2 Paired Rule Classifier

The paired rule classifier takes the 164 ele-
ment feature vector and creates a new feature

vector consisting of the original 164 features and

all possible ratios of the form A/B. This results
in a feature vector with 13694 features.

Next, the divergence for each pair of classes is

computed for each feature. For a given feature F,

the divergence between class i and class j is de-
fined as:

DIV(F)_.) = 1m, - mj I / ( s, + sj ),

where m, and mj are the means for classes i and j,

and s, and sj are the standard deviations for those
classes.

A list of features, sorted by decreasing diver-

gence, is coastructed for each pair of classes. In

this study, the 5 features with highest divergence

are chosen for each class pair. A threshold then
is determined for each of the chosen features. For

a given feature F, the threshold T is used as a test

for discriminating between the two classes i and j
as follows:

T= m, + s, ( mj- mi) / (s, + sj ).

If F < T, then the test returns class i, if F > T the

test returns class j. Each class has 5 tests in this

study. A histogram tabulates the number of tests
satisfied by each class. After all tests for each

class have been completed, the class with the

highest histogram count is chosen.

3.3 Paired Histogram Classifier

The paired histogram classifier takes the 164
element feature vector and constructs histograms

for each pair of classes. For feature F, two histo-

grams Iv and Jr are created for classes i and j.

The histogram ranges are scaled to accommodate
the minimum and maximum values of both

classes and discretized into 256 bins. The histo-

gram values for each class are normalized by the

number of samples in the class. These paired

histograms are analyzed and sorted, based upon

overlap and divergence. Overlap, O, is defined as
follows:

256

off),., = Z
x=l

Divergence is defined above.
The three features with the lowest overlap and

highest divergence for each pair of classes are
chosen. For a chosen feature F, the paired histo-

grams lr and Jr are used for discriminating be-

tween class i and j.

The histograms can be used as discriminators

in a variety of ways. The method chosen for this

study considers the histograms as range specifiers

for the class pairs. Each of the 256 bins of the

normalized histograms lr and Jr are compared

and the following rules are applied:

iflr(x) > Jr(x) then if Iv(x) < Jr(x)

It(x) = 1 Iv(x) = 1

Jr(x) = 0 Jr(x) = l

then

where x = 1.256

The paired histograms lr and Jr now represent

ranges in feature F which correspond to classes i

and j respectively. The three features used for

each class pair produce three pairs of histograms
which are used for classification. This process is

repeated for each pairwise combination of classes.

The following procedure is used to classify a

sample. First, calculate the 164 feature vector for

the sample. Next, compute the histogram bin for
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each set of paired histograms. Retrieve the value

at each computed histogram bin and increment a
voting histogram by that value. Finally, examine

the voting histogram and assign the class with

the highest value

4. RESULTS

The paired rule and paired histogram methods

were both used on three areas of interest; polar,
desert, and South America. These areas were

chosen because they are particularly difficult ar-

eas to classify. Results are preliminary, at this

time, but both classifiers are performing well for

all of the scenes analyzed so far. In particular,
the South American classifier is able to detect

smoke from biomass burning. The desert classi-
fier can detect desert, dust storms and some

sunglint areas in the ocean. The polar classifier
is able to differentiate bet_veen clouds and ice.

We are very encouraged by our results with these
difficult classes.

Color photographs of the classification results

will be presented at the conference.

5. FUTURE WORK

The classification algorithms arc undergoing

continuing revision and enhancement. Work is

also continuing on dcvcloping better features for
classification.

The training sample database is constantly

expanding to include more representative sam-

ples of each class and more comprehensive cov-

erage of the earth.
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